Code : 20SC01T

Requster
Number

I/II Semester Diploma Examination, February/March-2023

Time : 3 Hours $]$
Instructions : (i) Answer one full question from each section.
$\begin{array}{ll}\text { Instructions: } & \text { (i) Answer one full ques } 20 \text { marks. } \\ & \text { (ii) Each section carries } 20\end{array}$

1. (a) Define square matrix with an example.

OR
If $A=\left[\begin{array}{ll}4 & 5 \\ 3 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & t \\ 2 & 1\end{array}\right]$, then find $3 A-2 B$.
(b) If $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 2\end{array}\right]$, then find the inverse of matrix A if it exists.

OR
Find the characteristic roots of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$.
| Max. Marks : 100
SECTION-1
(c) Solve the system of linear equations by applying Cramer's rule :

$$
\begin{aligned}
& x+y=1 \\
& 2 x+y=2
\end{aligned}
$$

OR

The Maruti Motor Company Ltd. has 2 outlets, one in Delhi and one in Mumbai, among other things, it sells Baleno. Ertiga and Brezza cars. The monthly sales of these cars at the two stores for two months are given in the following tables :

| January Sales | |
| :--- | :---: | :---: |
| Delhi Mumbai
 Baleno 45 30
 Ertiga 35 25
 Brezza 20 18 | |

February Sales

	Delhi	Mumbai
Baleno	42	28
Ertiga	36	20
Brezza	22	16

Use matrix subtraction to calculate the change in sales of each product in each store from January to February.
(d) If $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right]$. find AB matrix and also find $(\mathrm{AB})^{\top}$ matrix. OR
For the matrix $A=\left[\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right]$, verify $|A| \cdot I=A \cdot(\operatorname{adj} A)$ where $|A|$ stands for determinant of A and I is a unit matrix of order 2×2.

SECTION - II

(a) Find slope and x-intercept of the line $3 x+4 y+7=0$.

OR

Write the standard form of equation of straight line in (i) general form and (ii) one-point form.
(b) Find the equation of line passing through the point $(1,2)$ and parallel to the line $21-3 y+1=0$.

OR

Find the equation of straight line passing through the points $(2,3)$ and $(4,6)$.
(c) Find the equation of straight line using intercepts form whose x-intercept is 3 and y-intercept is 2

OR

Show that the angle between the lines
$x-y+4=0$ and $2 x-y+5=0$ is $\tan ^{-1}(1 / 3)$
(d) If the line inclined at angle of 45° with + ve direction of x-axis and having y intercept ' 5 ' unit, then find its equation using slope-intercept form.

OR

Write the condition of slopes for 2 lines to be parallel and show that the lines $2 x+y-4=0$ and $6 x+3 y+10=0$ are parallel.

SECTION - III

Convert 40° into radians and $\frac{8 \pi}{7}$ into degree.

OR

Prove that $\tan \left(45^{\circ}-A\right)=\frac{1-\tan A}{1+\tan A}$
Simplify $\frac{\sin \left(360^{\circ}+A\right) \cdot \tan \left(180^{\circ}+A\right)}{\cos \left(90^{\circ}-A\right) \cdot \cot \left(270^{\circ}-A\right)}$.
OR
$\tan \theta=\frac{3}{4}$ where θ is in I quadrant, show that the value of $5 \sin \theta+5 \cos \theta=7$.
(c) Write the formula for $\cos (A+B)$ then find the value of $\cos 75^{\circ}$

OR
Prove that $\frac{\sin 2 A}{\sin A}-\frac{\cos 2 A}{\cos A}=\sec A$.
(d) Prove that $\frac{\sin 6 \theta+\sin 2 \theta}{\cos 6 \theta+\cos 2 \theta}=\tan 4 \theta$.

OR
Prove that $\frac{1-\cos 2 \theta+\sin 2 \theta}{1+\cos 2 \theta+\sin 2 \theta}=\tan \theta$

SECTION - IV

4. (a) If $y=\tan x+4 e^{x}-6+\sqrt{x}$, then find $\frac{d y}{d x}$.

Differentiate $x^{2} \cdot \mathrm{e}^{x}$ w.r.t. x.
(b) Find the derivative of $y=\frac{1+\tan x}{1-\tan x}$ w.r.t. x.

OR

If $y=2 x^{4}-3 x^{3}-2 x^{2}+x-1$, find $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}$ at $x=0$.
(c) Distance travelled by a particle in ' t ' second is given by $S=2 t^{3}-t^{2}+5 t-6$.

Find the velocity and acceleration of particle at $t=2$ second.

OR

Find the maximum and minimum values of function $y=2 x^{3}-3 x^{2}-36 x+10$
(d) If $\mathrm{y}=x^{2}$, show that $x \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}-\frac{\mathrm{dy}}{\mathrm{d} x}=0$.

OR
Find the equation of tangent to the curve $y=x^{2}+x-1$ at the point $(1,1)$.

SECTION - V

5. (a) Integrate $\mathrm{e}^{x}+\frac{1}{1+x^{2}}-\sin x+x^{3}$ w.r.t. x.

OR

Evaluate $\int x^{2} \cdot(1+x) \cdot \mathrm{d} x$

$$
\begin{aligned}
& \text { 20SC01T } \\
& \text { (b) Evaluate } \int_{\text {OR }} \cos ^{2} x \cdot \mathrm{~d} x \text {. } \\
& \text { Show that } \int_{0}^{\pi / 4} \tan ^{2} x \cdot \sec ^{2} x \cdot \mathrm{~d} x=1 / 3 \text {. } \\
& \text { (c) With the use of definite integrals find the area bounded by the curve } \mathrm{y}=x^{3}-2 \text {, } \\
& x \text {-axis and } x=0, x=1 \text {. } \\
& \text { The curve } \mathrm{y}^{2}=x+2 \text { is rotated about } x \text {-axis. Find the volume of solid generated } \\
& \text { by revolving the curve between } x=2 \text { and } x=5 \text {. } \\
& \text { (d) Evaluate the indefinite integral } \int x \cdot \mathrm{e}^{x} \cdot \mathrm{~d} x \text { using integration by parts. } \\
& \text { OR } \\
& \text { Evaluate } \int_{0}^{1} \frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}} \cdot \mathrm{~d} x .
\end{aligned}
$$

